Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
Rom J Morphol Embryol ; 65(1): 27-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527981

RESUMO

Cyclophosphamide (CP) is an alkylating chemotherapeutic agent commonly used in cancer treatments. In this study, we aimed to investigate the effects of 4-Hydroperoxy cyclophosphamide (4-HC), which is active form of CP, on glucose-regulated protein 78 (GRP78), activating transcription factor 6 (ATF6), phospho-protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (p-PERK), phospho-inositol-requiring enzyme 1 alpha (p-IRE1α), eukaryotic translation initiation factor 2 alpha (eIF2α), and caspase-3 messenger ribonucleic acids (mRNAs) and proteins that play roles in the ER stress pathway and apoptosis in U87 and T98 human glioblastoma cell lines. U87 and T98 human glioblastoma cell lines were divided into control and 4-HC-treated groups. Cell viability assay was used to detect the half maximal inhibitory concentration (IC50) for 24 hours of 4-HC. Immunocytochemistry and quantitative polymerase chain reaction (qPCR) methods were used to evaluate the levels of proteins and their mRNAs. The IC50 values of U87 and T98 cells were calculated as 15.67±0.58 µM and 19.92±1 µM, respectively. The levels of GRP78, ATF6, p-PERK, p-IRE1α, eIF2α, and caspase-3 protein expressions in the 4-HC-treated group compared to that in the control group. These increased protein expressions also were correlated with the mRNA levels. The ER stress signal pathway could be active in 4-HC-induced cell death. Further studies of ER-related stress mechanisms in anticancer treatment would be important for effective therapeutic strategies.


Assuntos
Glioblastoma , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Endorribonucleases/farmacologia , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , eIF-2 Quinase/farmacologia , Caspase 3/farmacologia , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Linhagem Celular , Apoptose , Ciclofosfamida/farmacologia
2.
Physiol Plant ; 176(1): e14155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38342490

RESUMO

Leucine-rich repeat receptor kinases (LRR-RKs) play a pivotal role in diverse aspects of growth, development, and immunity in plants by sensing extracellular signals. Typically, LRR-RKs are activated through the ligand-induced interaction with a SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) coreceptor, triggering downstream signaling. ROOT MERISTEM GROWTH FACTOR1 (RGF1) INSENSITIVEs (RGIs) LRR-RLK receptors promote primary root meristem activity while inhibiting lateral root (LR) development in response to RGF peptide. In this study, we employed rapamycin-induced dimerization (RiD) and BAK1-INTERACTING RECEPTOR-LIKE KINASE3 (BIR3) chimera approaches to explore the gain-of-function of RGI1, RGI4, and RGI5. Rapamycin induced the association of cytosolic kinase domains (CKDs) of RGI1 and the BAK1 coreceptor, activating both mitogen-activated protein kinase 3 (MPK3) and MPK6. Rapamycin significantly inhibited LR formation in RiD-RGI1/RGI4/RGI5-BAK1 plants. Using transgenic Arabidopsis expressing RGI1CKD fused to the BIR3-LRR chimera under estradiol control, we observed a substantial reduction in LR density upon ß-estradiol treatment. Additionally, we identified a decrease in root gravitropism in BIR3 chimera plants. In contrast, RiD-RGI/BAK1 plants did not exhibit defects in root gravitropism, implying the importance of combinatorial interactions between RGIs and SERK coreceptors in the inhibition of root gravitropism. Constitutive activation of RGIs with BAK1 in RiD-RGI/BAK1 plants by rapamycin treatment resulted in the inhibition of primary root growth, resembling the inhibitory effects observed with high concentrations of phytohormones on primary root elongation. Our findings highlight that the interactions between CKDs of RGIs and BAK1, constitutively induced by rapamycin or BIR3 chimera, efficiently control LR development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Proteínas de Arabidopsis/metabolismo , Dimerização , Plantas/metabolismo , Estradiol/metabolismo , Estradiol/farmacologia
3.
Bioelectromagnetics ; 45(1): 4-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37408527

RESUMO

The biological effects of exposure to electromagnetic fields due to wireless technologies and connected devices are a subject of particular research interest. Ultrashort high-amplitude electromagnetic field pulses delivered to biological samples using immersed electrodes in a dedicated cuvette have widely demonstrated their effectiveness in triggering several cell responses including increased cytosolic calcium concentration and reactive oxygen species (ROS) production. In contrast, the effects of these pulses are poorly documented when electromagnetic pulses are delivered through an antenna. Here we exposed Arabidopsis thaliana plants to 30,000 pulses (237 kV m-1 , 280 ps rise-time, duration of 500 ps) emitted through a Koshelev antenna and monitored the consequences of electromagnetic fields exposure on the expression levels of several key genes involved in calcium metabolism, signal transduction, ROS, and energy status. We found that this treatment was mostly unable to trigger significant changes in the messenger RNA accumulation of calmodulin, Zinc-Finger protein ZAT12, NADPH oxidase/respiratory burst oxidase homolog (RBOH) isoforms D and F, Catalase (CAT2), glutamate-cystein ligase (GSH1), glutathione synthetase (GSH2), Sucrose non-fermenting-related Kinase 1 (SnRK1) and Target of rapamycin (TOR). In contrast, Ascorbate peroxidases APX-1 and APX-6 were significantly induced 3 h after the exposure. These results suggest that this treatment, although quite strong in amplitude, is mostly ineffective in inducing biological effects at the transcriptional level when delivered by an antenna. © 2023 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Campos Eletromagnéticos , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia
4.
Radiother Oncol ; 191: 110059, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135186

RESUMO

BACKGROUND AND PURPOSE: Due to the high intrinsic radioresistance of pancreatic ductal adenocarcinoma (PDAC), radiotherapy (RT) is only beneficial in 30% of patients. Therefore, this study aimed to identify targets to improve the efficacy of RT in PDAC. MATERIALS AND METHODS: Alamar Blue proliferation and colony formation assay (CFA) were used to determine the radioresponse of a cohort of 38 murine PDAC cell lines. A gene set enrichment analysis was performed to reveal differentially expressed pathways. CFA, cell cycle distribution, γH2AX FACS analysis, and Caspase 3/7 SYTOX assay were used to examine the effect of a combination treatment using KIRA8 as an IRE1α-inhibitor and Ceapin-A7 as an inhibitor against ATF6. RESULTS: The unfolded protein response (UPR) was identified as a pathway highly expressed in radioresistant cell lines. Using the IRE1α-inhibitor KIRA8 or the ATF6-inhibitor Ceapin-A7 in combination with radiation, a radiosensitizing effect was observed in radioresistant cell lines, but no substantial alteration of the radioresponse in radiosensitive cell lines. Mechanistically, increased apoptosis by KIRA8 in combination with radiation and a cell cycle arrest in the G1 phase after ATF6 inhibition and radiation have been observed in radioresistant cell lines. CONCLUSION: So, our data show evidence that the UPR is involved in radioresistance of PDAC. Increased apoptosis and a G1 cell cycle arrest seem to be responsible for the radiosensitizing effect of UPR inhibition. These findings are supportive for developing novel combination treatment concepts in PDAC to overcome radioresistance.


Assuntos
60532 , Carcinoma Ductal Pancreático , Naftalenos , Neoplasias Pancreáticas , Radiossensibilizantes , Humanos , Animais , Camundongos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Linhagem Celular Tumoral , Neoplasias Pancreáticas/radioterapia , Carcinoma Ductal Pancreático/radioterapia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Resposta a Proteínas não Dobradas , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Apoptose , Proliferação de Células
5.
BMC Oral Health ; 23(1): 1032, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129878

RESUMO

BACKGROUD: Hypoadiponectinemia is the important cause of insulin resistance. Recent studies have shown that periodontitis is associated with hypoadiponectinemia. The purpose of this study was to investigate the effect of periodontitis-induced endoplasmic reticulum stress (ERS) in visceral adipocytes on hypoadiponectinemia. METHODS: Rat periodontitis models were established by local ligation with silk around the bilateral maxillary second molars. Porphyromonas gingivalis-lipopolysaccharid (P.g-LPS) was also used to stimulate the visceral adipocytes in vitro. The protein expression levels of glucose regulated protein 78 (GRP78), inositol-requiring protein 1α (IRE1α), protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6) and adiponectin were detected. IRE1α lentiviruses were transfected into visceral adipocytes in vitro, and an IRE1α inhibitor (KIRA6) was injected in epididymal adipose tissue of rats to detect and verify the effect of ERS on adiponectin expression in visceral adipocytes in vivo. RESULTS: Hypoadiponectinemia was observed in periodontitis rat, and the expression levels of ERS key proteins GRP78 and the phosphorylation levels of IRE1α (p-IRE1α)/IRE1α in visceral adipocytes were increased, while the expression levels of adiponectin protein were decreased. After KIRA6 injection into epididymal adipose tissue of rats with periodontitis, adiponectin levels in visceral adipocytes increased, and serum adiponectin levels recovered to a certain extent. The protein expression levels of GRP78 and p-IRE1α/IRE1α were increased and adiponectin protein expression was decreased in P.g-LPS-induced visceral adipocytes. Overexpression of IRE1α further inhibited adiponectin expression in P.g-LPS-stimulated visceral adipocytes, and conversely, IRE1α inhibition restored adiponectin expression. CONCLUSIONS: Our findings suggest that periodontitis induces ERS in visceral adipocytes leading to hypoadiponectinemia. IRE1α is a key protein regulating adiponectin expression in visceral adipocytes.


Assuntos
Adiponectina , Periodontite , Ratos , Animais , Adiponectina/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Chaperona BiP do Retículo Endoplasmático , Lipopolissacarídeos/farmacologia , Adipócitos/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Periodontite/metabolismo
6.
Environ Sci Pollut Res Int ; 30(60): 125790-125805, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38001299

RESUMO

Cadmium (Cd) is a highly toxic environmental pollutant. The liver is an important metabolic organ in the body and is susceptible to Cd toxicity attacks. Quercetin (Que) is a flavonoid compound with pharmacological activities of scavenging free radicals and antioxidant activity. Previous studies have shown that Que can alleviate Cd caused hepatocyte apoptosis in rats, but the specific mechanism remains unclear. To explore the specific mechanism, we established a model of Cd toxicity and Que rescue in BRL-3A cells and used 4-phenylbutyrate (4-PBA), an endoplasmic reticulum stress (ERS) inhibitor, as positive control. Set up a control group, Cd treatment group, Cd and Que co treatment group, Que treatment group, Cd and 4-PBA co treatment group, and 4-PBA treatment group. Cell Counting Kit-8 (CCK-8) method was employed to measure cell viability. Fluorescence staining was applied to observe cell apoptosis. Flow cytometry was performed to detect reactive oxygen species levels. Real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot method was adopted to detect the mRNA and protein expression levels of ERS and apoptosis-related genes. The results showed that compared with the control group, the Cd treated group showed a significant decrease in cell viability (P < 0.01), an increase in intracellular ROS levels, and apoptosis. The mRNA and protein expression levels of ERS and apoptosis related factors such as GRP78, IRE1α, XBP1, ATF6, Caspase-12, Caspase-3 and Bax in the cells were significantly increased (P < 0.01), while the mRNA and protein expression levels of Bcl-2 were significantly reduced (P < 0.01). Compared with the Cd treatment group, the Cd and Que co treatment group and the Cd and 4-PBA co treatment group showed a significant increase in cell viability (P < 0.01), a decrease in intracellular ROS levels, a decrease in cell apoptosis, and a significant decrease in the expression levels of ERS and apoptosis related factors mRNA and protein (P < 0.01), as well as a significant increase in Bcl-2 mRNA and protein expression (P < 0.01). We confirmed that Que could alleviate the apoptosis caused by Cd in BRL-3A cells, and the effects of Que were similar to those of ERS inhibitor.


Assuntos
Cádmio , Quercetina , Ratos , Animais , Quercetina/farmacologia , Cádmio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Apoptose , RNA Mensageiro/metabolismo , Estresse do Retículo Endoplasmático
7.
PeerJ ; 11: e16154, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868068

RESUMO

Objective: To explore the specific protective mechanism of 3021 meal replacement powder (MRP) against non-alcoholic fatty liver disease (NAFLD). Materials and Methods: C57BL/6J male mice were divided into four groups: control group, 3021 MRP group, model group and test group. The lipid accumulation and endoplasmic reticulum stress (ERS)-related proteins in hepatocytes of mice were detected by hematoxylin-eosin (HE) staining, oil red O staining and Western blotting. Results: The expressions of GRP78, GRP94, p-PERK and p-IRE1α were significantly inhibited in test group compared with those in model group. The protein expressions of p-NF-κB, p-JNK, IL-1ß, IL-18 and NOX4 in test group were also significantly lower than those in model group. In vivo and in vitro experiments revealed that the body weight and lipid droplet content, and the expressions of ERS-related proteins (including BIP and XBP-1) in liver tissues all significantly declined in model group compared with those in 3021 MRP group. Conclusion: In conclusion, 3021 MRP can greatly reduce lipid accumulation by inhibiting ERS, oxidative stress and inflammatory response in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Proteínas Serina-Treonina Quinases/farmacologia , Endorribonucleases/farmacologia , Pós/farmacologia , Camundongos Endogâmicos C57BL , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Estresse Oxidativo , Lipídeos/farmacologia
8.
Environ Sci Pollut Res Int ; 30(52): 112517-112535, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37831247

RESUMO

Cadmium (Cd) is a widely distributed environmental contaminant that is highly toxic to animals and humans. However, detailed reports on Cd-induced programmed necrosis have not been seen in chicken testicular Leydig cells. Selenium (Se) is a trace element in the human body that has cytoprotective effects in a variety of pathological damages caused by heavy metals. This study investigated the potential mechanisms of Cd-induced programmed cell necrosis and the antagonistic effect of Se on Cd toxicity. Chicken testis Leydig cells were divided into six groups, namely, control, Se (5 µmol/L Na2SeO3), Cd (20 µmol/L CdCl2), Se + Cd (5 µmol/L Na2SeO3 and 20 µmol/L CdCl2), 4-phenylbutyric acid (4-PBA) + Cd (10 mmol/L 4-phenylbutyric acid and 20 µmol/L CdCl2), and Necrostatin-1 (Nec-1) + Cd (60 µmol/L Necrostatin-1 and 20 µmol/L CdCl2). The results showed that Cd exposure decreased the activity of CAT, GSH-Px, and SOD and the concentration of GSH, and increased the concentration of MDA and the content of ROS. Relative mRNA and protein expression of GRP78, PERK, ATF6, IRE1, CHOP, and JNK increased in the Cd group, and mRNA and protein expression of TNF-α, TNFR1, RIP1, RIP3, MLKL, and PARP1 significantly increased in the Cd group, while Caspase-8 mRNA and protein expression significantly decreased. The abnormal expression of endoplasmic reticulum stress-related proteins was significantly reduced by 4-PBA pretreatment; the increased expression of TNF-α, TNFR1, RIP1, RIP3, MLKL, and PARP1 caused by Cd toxicity was alleviated; and the expression of caspase-8 was upregulated. Conversely, the increased mRNA and protein expression of endoplasmic reticulum stress marker genes (GRP78, ATF6, PERK, IRE1, CHOP, JNK) caused by Cd was not affected after pretreatment with Nec-1. We also found that these Cd-induced changes were significantly attenuated in the Se + Cd group. We clarified that Cd can cause programmed necrosis of chicken testicular Leydig cells through endoplasmic reticulum stress, and Se can antagonize Cd-induced programmed necrosis of chicken testicular Leydig cells.


Assuntos
Selênio , Animais , Masculino , Humanos , Selênio/farmacologia , Selênio/metabolismo , Cádmio/metabolismo , Galinhas/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/farmacologia , Caspase 8 , Testículo/metabolismo , Células Intersticiais do Testículo/metabolismo , Chaperona BiP do Retículo Endoplasmático , Fator de Necrose Tumoral alfa/metabolismo , Necrose/metabolismo , Estresse do Retículo Endoplasmático , RNA Mensageiro/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Estresse Oxidativo
9.
Chin J Integr Med ; 29(11): 998-1006, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37661231

RESUMO

OBJECTIVE: To explore the mechanism of Radix Scrophulariae (RS) extracts in the treatment of hyperthyroidism rats by regulating proliferation, apoptosis, and autophagy of thyroid cell through the mammalian sterile 20-like kinase 1 (MST1)/Hippo pathway. METHODS: Twenty-four rats were randomly divided into 4 groups according to a random number table: control, model group, RS, and RS+Hippo inhibitor (XMU-MP-1) groups (n=6 per group). Rats were gavaged with levothyroxine sodium tablet suspension (LST, 8 µ g/kg) for 21 days except for the control group. Afterwards, rats in the RS group were gavaged with RS extracts at the dose of 1,350 mg/kg, and rats in the RS+XMU-MP-1 group were gavaged with 1,350 mg/kg RS extracts and 1 mg/kg XMU-MP-1. After 15 days of administration, thyroid gland was taken for gross observation, and histopathological changes were observed by hematoxylin-eosin staining. The structure of Golgi secretory vesicles in thyroid tissues was observed by transmission electron microscopy. The expression of thyrotropin receptor (TSH-R) was observed by immunohistochemistry. Terminal-deoxynucleoitidyl transferase mediated nick end labeling assay was used to detect cell apoptosis in thyroid tissues. Real-time quantity primer chain reaction and Western blot were used to detect the expressions of MST1, p-large tumor suppressor gene 1 (LATS1), p-Yes1 associated transcriptional regulator (YAP), proliferating cell nuclear antigen (PCNA), G1/S-specific cyclin-D1 (Cyclin D1), B-cell lymphoma-2 (Bcl-2), Caspase-3, microtubule-associated proeins light chain 3 II/I (LC3-II/I), and recombinant human autophagy related 5 (ATG5). Thyroxine (T4) level was detected by enzyme-linked immunosorbent assay. RESULTS: The thyroid volume of rats in the model group was significantly increased compared to the normal control group (P<0.01), and pathological changes such as uneven size of follicular epithelial cells, disorderly arrangement, and irregular morphology occurred. The secretion of small vesicles by Golgi apparatus was reduced, and the expressions of receptor protein TSH-R and T4 were significantly increased (P<0.01), while the expressions of MST1, p-LATS1, p-YAP, Caspase-3, LC3-II/I, and ATG5 were significantly decreased (P<0.01). The expressions of Bcl-2, PCNA, and cyclin D1 were significantly increased (P<0.01). Compared with the model group, RS extracts reduced the volume of thyroid gland, improved pathological condition of the thyroid gland, promoted secretion of the secretory vesicles with double-layer membrane structure in thyroid Golgi, significantly inhibited the expression of TSH-R and T4 levels (P<0.01), upregulated MST1, p-LATS1, p-YAP, Caspase-3, LC3-II/I, and ATG5 expressions (P<0.01), and downregulated Bcl-2, PCNA, and Cyclin D1 expressions (P<0.01). XMU-MP-1 inhibited the intervention effects of RS extracts (P<0.01). CONCLUSION: RS extracts could inhibit proliferation and promote apoptosis and autophagy in thyroid tissues through MST1/Hippo pathway for treating hyperthyroidism.


Assuntos
Via de Sinalização Hippo , Hipertireoidismo , Ratos , Humanos , Animais , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ciclina D1/metabolismo , Ciclina D1/farmacologia , Caspase 3/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Apoptose , Hipertireoidismo/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tireotropina/farmacologia , Mamíferos/metabolismo
10.
J Endod ; 49(12): 1641-1651.e6, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37769871

RESUMO

INTRODUCTION: Human dental pulp stem cells (hDPSCs) reside in specialized microenvironments in the dental pulp, termed "niches," which are composed of diverse cellular components including nerves. Sensory nerves can positively regulate the expansion and differentiation of pulp cells, while the biological effects of the sympathetic nervous system (SNS) on hDPSCs remain elusive. This study is devoted to investigating the effects and underlying mechanisms of the SNS on the proliferation and migration of hDPSCs. METHODS: The distribution of sympathetic nerve fibers in human dental pulp was examined by immunofluorescence staining of tyrosine hydroxylase. The concentration of norepinephrine in healthy and carious human dental pulp tissues was detected using enzyme-linked immunosorbent assay. RNA-sequencing was applied to identify the dominant sympathetic neurotransmitter receptor in hDPSCs. Seahorse metabolic assay, adenosine triphosphate assay, lactate assay, and mitochondrial DNA copy number were performed to determine the level of glycometabolism. Transwell assay, wound healing assay, 5-ethynyl-2'-deoxyuridine staining assay, cell cycle assay, and Cell Counting Kit-8 assay were conducted to analyze the migratory and proliferative capacities of hDPSCs. RESULTS: Sprouting of sympathetic nerve fibers and an increased concentration of norepinephrine were observed in inflammatory pulp tissues. Sympathetic nerve fibers were mainly distributed along blood vessels, and aldehyde dehydrogenase 1-positive hDPSCs resided in close proximity to neurovascular bundles. ADRA1B was identified as the major sympathetic neurotransmitter receptor expressed in hDPSCs, and its expression was enhanced in inflammatory pulp tissues. In addition, the SNS inhibited the proliferation and migration of hDPSCs through metabolic reprogramming via ADRA1B and its crosstalk with serine-threonine kinase and p38 mitogen-activated protein kinase signaling pathways. CONCLUSIONS: This study demonstrates that the SNS can shift the metabolism of hDPSCs from oxidative phosphorylation to anaerobic glycolysis via ADRA1B and its crosstalk with serine-threonine kinase and p38 mitogen-activated protein kinase signaling pathways, thereby inhibiting the proliferative and migratory abilities of hDPSCs. This metabolic shift may facilitate the maintenance of the quiescent state of hDPSCs.


Assuntos
Polpa Dentária , Proteínas Serina-Treonina Quinases , Humanos , Proliferação de Células , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Diferenciação Celular/fisiologia , Células-Tronco/fisiologia , Sistema Nervoso Simpático , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia , Norepinefrina/farmacologia , Norepinefrina/metabolismo , Receptores de Neurotransmissores/metabolismo , Receptores Adrenérgicos/metabolismo , Células Cultivadas
11.
Int J Rheum Dis ; 26(10): 2024-2030, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37593912

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a common disease with joint cartilage destruction. BUB1 Mitotic Checkpoint Serine/Threonine Kinase (BUB1) is abnormally expressed in synovial tissues of RA patients, but its effect on RA remains unclear. In this study, we explored the role of BUB1 in RA. METHODS: An RA cell model was constructed by treating MH7A cells with tumor necrosis factor-α (TNF-α). The levels of BUB1, GAPDH, phosphorylated phosphatidylinositol 3 kinase (p-PI3K)/PI3K, and phosphorylated serine/threonine kinase (p-Akt)/Akt in MH7A cells were examined by Western blot. The MH7A cell proliferation was examined by colony formation assay. Wound healing assay and transwell assay were carried out to detect MH7A cell migration and invasion. The mRNA levels of proinflammatory cytokines were assessed by quantitative reverse transcription polymerase chain reaction. RESULTS: The results showed that knockdown BUB1 inhibited TNF-α-induced MH7A cell proliferation, migration, and invasion. Silencing BUB1 repressed the PI3K/Akt pathway in TNF-α-induced MH7A cells. We also found that the TNF-α-induced MH7A cell proliferation, migration, and invasion were repressed by si-BUB1 transfection, whereas these effects were attenuated by 740Y-P (an activator of the PI3K pathway) co-treatment. Knockdown of BUB1 reduced the expression of the proinflammatory cytokines. CONCLUSION: Knockdown BUB1 repressed TNF-α-induced MH7A cell proliferation, migration and invasion through the PI3K/Akt pathway.


Assuntos
Artrite Reumatoide , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Transdução de Sinais , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Proliferação de Células , Fibroblastos/metabolismo , Serina/metabolismo , Serina/farmacologia
12.
Liver Transpl ; 29(10): 1050-1062, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439666

RESUMO

Ischemia-reperfusion injury (IRI) remains a major cause of mortality and morbidity after liver surgery. Endoplasmic reticulum (ER) stress is a critical mechanism of inflammatory injury during hepatic IRI. In this study, we investigated the effect of sphingosine kinases 2 (SK2) on ER stress and hepatic IRI. We established hepatic IRI mice and hepatocellular hypoxia/reoxygenation in vitro model. We observed the SK2 and ER stress protein IRE1α expression. Then, we used an SK2 inhibitor and knocked down IRE1α/SK2, to observe the effect of SK2 during IRI. Our results showed that the expression of ER stress and SK2 was significantly elevated during hepatic IRI. Inhibition of SK2 ameliorated liver inflammation and reduced cell apoptosis in hepatic IRI mice. Consistently, we found that the inhibition of IRE1α also downregulated SK2 expression and reduced mitochondrial membrane permeability. Furthermore, the knockdown of SK2 could also reduce cell damage and reduce the expression of inflammatory factors but did not influence ER stress-related signaling pathway. Taken together, our results suggested that ER stress and SK2 played important and regulatory roles in hepatic IRI. Inhibition of ER stress and SK2 could significantly improve liver function after hepatic IRI.


Assuntos
Transplante de Fígado , Traumatismo por Reperfusão , Camundongos , Animais , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Transplante de Fígado/efeitos adversos , Fígado/metabolismo , Inflamação/complicações , Inflamação/metabolismo , Apoptose , Traumatismo por Reperfusão/etiologia
13.
J Immunotoxicol ; 20(1): 2229428, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37417782

RESUMO

While the detailed mechanisms for how particulate matter (PM) causes adverse health effects in the lungs remain largely unknown, endoplasmic reticulum (ER) stress has been implicated in PM-induced lung injury. The present study was undertaken to examine how/if ER stress might regulate PM-induced inflammation, and to begin to define potential underlying molecular mechanisms. Here, ER stress hallmarks were examined in human bronchial epithelial (HBE) cells exposed to PM. To confirm roles of certain pathways, siRNA targeting ER stress genes and an ER stress inhibitor were employed. Expression of select inflammatory cytokines and related signaling pathway components by the cells were assessed as well. The results showed that PM exposure induced elevations in two ER stress hallmarks, i.e. GRP78 and IRE1α, in time-and/or dose-related manners in the HBE cells. Inhibition of ER stress by siRNA for GRP78 or IRE1α significantly alleviated the PM-induced effects. Further, ER stress appeared to regulate PM-induced inflammation - likely through downstream autophagy and NF-κB pathways - as implied by studies showing that inhibition of ER stress by siRNA of GRP78 or IRE1α caused significant amelioration of PM-induced autophagy and subsequent activation of NF-κB pathways. Moreover, the ER stress inhibitor 4-PBA were used to confirm the protective effects against PM-induced outcomes. Together, the results suggest ER stress plays a deleterious role in PM-induced airway inflammation, possibly through activation of autophagy and NF-κB signaling. Accordingly, protocols/treatments that could lead to inhibited ER stress could potentially be effective for treatment of PM-related airway disorders.


Assuntos
NF-kappa B , Proteínas Serina-Treonina Quinases , Humanos , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Chaperona BiP do Retículo Endoplasmático , Inflamação , Material Particulado/toxicidade , Epitélio/metabolismo , Estresse do Retículo Endoplasmático , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia
14.
Discov Med ; 35(176): 208-220, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37272088

RESUMO

BACKGROUND: The emergence of chemotherapy resistance usually causes therapeutic failure in advanced cervical cancer. Forkhead box protein M1 (FOXM1) and threonine tyrosine kinase (TTK) are closely associated with cancer drug sensitivity, but the mechanism of FOXM1 on TTK involvement in chemo-treated cervical cancer remains unclear. Here, we aimed to observe the effects of FOXM1 on TTK and on chemotherapy sensitivity in cervical cancer. METHODS: The expressions of FOXM1 and TTK in cervical cancer tissues and para-cancerous tissues were analyzed by immunohistochemistry. SiHa and Hela cells were transfected with human lentivirus-FOXM1, small interfering RNA (siRNA) or pcDNA3.1/FOXM1 to analyze the changes in TTK protein expression. Furthermore, the cells were treated with paclitaxel (8 µM) or cisplatin (10 µM) to analyze the effects of FOXM1 on chemotherapy sensitivity. SiHa cells were used to construct a xenograft model to study the effects of FOXM1 expression in response to paclitaxel treatment. The tumor size and weight were observed. The expressions of Ki-67, FOXM1, and TTK protein in tumor tissues were measured by immunohistochemistry. RESULTS: High expression of FOXM1 and TTK were found in the cervical cancer tissues (p < 0.05). The TTK protein expressions were decreased by FOMX1-siRNA transfection in SiHa and Hela cells (p < 0.01). The cell viability and cell cycle were also suppressed by FOMX1-siRNA transfection (p < 0.01) but enhanced by pcDNA3.1/FOXM1 transfection (p < 0.01). For paclitaxel or cisplatin treatment, the cell viability and cell DNA damage were improved due to the FOXM1 overexpression (p < 0.01). TTK inhibitor significantly suppressed the effects of FOXM1 overexpression (p < 0.01). CONCLUSIONS: FOXM1 regulated TTK and affected the therapeutic efficacy of cisplatin and paclitaxel in cervical cancer.


Assuntos
Neoplasias Ovarianas , Neoplasias do Colo do Útero , Feminino , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Células HeLa , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias Ovarianas/patologia , RNA Interferente Pequeno/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacologia
15.
BMC Cardiovasc Disord ; 23(1): 154, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964482

RESUMO

PURPOSE: This study aimed to determine the effect and mechanism of action of adenosine 2 receptor (A2R) activation on myocardial ischemia reperfusion injury (MIRI) under diabetic conditions. METHODS: MIRI type 2 diabetic rats and H9C2 cardiomyocytes were treated with A2R agonist and then subjected to hypoxia for 6 h and reoxygenation for 18 h. Myocardial damage, and infarct size were determined by cardiac ultrasound. Indicators of cardiomyocyte injury, creatine kinase-MB and cardiac troponin I were detected by Enzyme Linked Immunosorbent Assay. Endoplasmic reticulum stress (ERS) was determined through measuring the expression levels of ERS related genes GRP78, p-IRE1/IRE1, and p-JNKJNK. The mechanism of A2R cardio protection in MIRI through regulating ERS induced autophagy was determined by investigating the ER resident protein IRE-1. The ER-stress inducer Tunicamycin, and the IRE-1 inhibitor STF in combination with the A2R agonist NECA were used, and the cellular responses were assessed through autophagy proteins expression Beclin-1, p62, LC3 and apoptosis. RESULTS: NECA improved left ventricular function post MIRI, limited myocardial infarct size, reduced myocardial damage, decreased cardiomyocytes apoptosis, and attenuated ERS induced autophagy through regulating the IRE-XBP1s-CHOP pathway. These actions resulted into overall protection of the myocardium against MIRI. CONCLUSION: In summary, A2R activation by NECA prior to ischemia attenuates apoptosis, reduces ERS induced autophagy and restores left ventricular function. This protective effect occurs through regulating the IRE1-XBPs-CHOP related mechanisms. NECA is thus a potential target for the treatment of MIRI in patient with type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Ratos Sprague-Dawley , Miócitos Cardíacos/metabolismo , Apoptose , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Autofagia
16.
Br J Biomed Sci ; 80: 11041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895328

RESUMO

Introduction: Dysregulated alternative splicing is a prominent feature of cancer. The inhibition and knockdown of the SR splice factor kinase SRPK1 reduces tumour growth in vivo. As a result several SPRK1 inhibitors are in development including SPHINX, a 3-(trifluoromethyl)anilide scaffold. The objective of this study was to treat two leukaemic cell lines with SPHINX in combination with the established cancer drugs azacitidine and imatinib. Materials and Methods: We selected two representative cell lines; Kasumi-1, acute myeloid leukaemia, and K562, BCR-ABL positive chronic myeloid leukaemia. Cells were treated with SPHINX concentrations up to 10µM, and in combination with azacitidine (up to 1.5 µg/ml, Kasumi-1 cells) and imatinib (up to 20 µg/ml, K562 cells). Cell viability was determined by counting the proportion of live cells and those undergoing apoptosis through the detection of activated caspase 3/7. SRPK1 was knocked down with siRNA to confirm SPHINX results. Results: The effects of SPHINX were first confirmed by observing reduced levels of phosphorylated SR proteins. SPHINX significantly reduced cell viability and increased apoptosis in Kasumi-1 cells, but less prominently in K562 cells. Knockdown of SRPK1 by RNA interference similarly reduced cell viability. Combining SPHINX with azacitidine augmented the effect of azacitidine in Kasumi-1 cells. In conclusion, SPHINX reduces cell viability and increases apoptosis in the acute myeloid leukaemia cell line Kasumi-1, but less convincingly in the chronic myeloid leukaemia cell line K562. Conclusion: We suggest that specific types of leukaemia may present an opportunity for the development of SRPK1-targeted therapies to be used in combination with established chemotherapeutic drugs.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide Aguda , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/genética , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas Serina-Treonina Quinases/farmacologia , Proteínas Serina-Treonina Quinases/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica
17.
Plant Foods Hum Nutr ; 78(2): 299-306, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36826691

RESUMO

Smilax china L. is an important herb used in traditional Chinese medicine. In this study, the mechanism of Smilax china L. polyphenols (SCP) on insulin resistance and anti-obesity in mice induced by a high-fat diet (HFD) was investigated. Fifty female mice were randomly divided into five groups: control, HFD and low, medium, and high doses of SCP for 70 d. SCP significantly decreased intraperitoneal adipose tissue index, body weight gain, liver lipids, and serum inflammatory factor levels. Blood glucose and insulin concentrations, as well as insulin resistance index in SCP, were significantly lower than those in HFD. In addition, SCP markedly up-regulated the gene expression of glucose transporter 4 (GLUT4), insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), serine-threonine kinase (AKT), Acyl-CoA oxidase (ACO), and protein kinase A (PKA), and down-regulated the expression of mammalian target of rapamycin complex 1 (mTORC1), sterol-responsive element-binding protein-1c (SREBP1c), fatty acid synthase (FAS), 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGCR), and forkhead box protein O1 (FOXO1). SCP significantly increased the protein expression of AKT, GLUT4, AMP-activated protein kinase (AMPK), phosphorylated-AMPK (p-AMPK), phosphorylated-AKT (p-AKT), and uncoupling protein 1 (UCP-1), and decreased the expression of SREBP1c, FAS, HMGCR, phosphorylation of IKBα (p-IKBα), and nuclear factor kappa B subunit p65 (P65) in the liver. Overall, SCP effectively reduced HFD-induced insulin resistance and obesity in mice, partly through NF-κB and IRS/AKT-AMPK signaling pathways to regulate inflammatory factors. Therefore, SCP may improve lifestyle diseases.


Assuntos
Resistência à Insulina , Smilax , Camundongos , Animais , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Dieta Hiperlipídica/efeitos adversos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Smilax/metabolismo , Polifenóis/farmacologia , Polifenóis/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Fígado , Transdução de Sinais/fisiologia , China , Camundongos Endogâmicos C57BL , Mamíferos/metabolismo
18.
Environ Pollut ; 322: 121117, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36690294

RESUMO

MC-LR can interfere with thyroid function in fish, but the underlying mechanism is still unclear. Current study focuses to study the intergenerational inheritance of MC-LR-induced thyroid toxicity in zebrafish and in rat thyroid cells. In vivo experiments, adult female zebrafish (F0) were exposed to MC-LR (0, 5, and 25 µg/L) for 90 days and mated with male zebrafish without MC-LR exposure to generate F1 generation. F1 embryos were allowed to develop normally to 7 days post-fertilization (dpf) in clear water. In the F0 generation, MC-LR induced disturbance of the hypothalamic-pituitary-thyroid (HPT) axis, leading to a decrease in the production of thyroid hormones. Maternal MC-LR exposure also induced growth inhibition by altering thyroid hormones (THs) homeostasis and interfering with thyroid metabolism and development in F1 offspring. Mechanistically, MC-LR caused excessive accumulation of ROS and induced ER stress that further lead to activation of UPR in the F0 and F1 offspring of zebrafish. Interestingly, our findings suggested that MC-LR exposure hampered thyroglobulin turnover by triggering IRE1 and PERK pathway in zebrafish and FRTL-5 thyroid cells, thus disturbing the thyroid endocrine system and contributing to the thyroid toxicity from maternal to its F1 offspring of zebrafish. Particularly, inhibition of the IRE1 pathway by siRNA could alleviate thyroid development injury induced by MC-LR in FRTL-5 cells. In addition, MC-LR induced thyroid cell apoptosis by triggering ER stress. Taken together, our results demonstrated that maternal MC-LR exposure causes thyroid endocrine disruption by ER stress contributing to transgenerational effects in zebrafish offspring.


Assuntos
Estresse do Retículo Endoplasmático , Microcistinas , Glândula Tireoide , Animais , Feminino , Masculino , Apoptose , Microcistinas/toxicidade , Microcistinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Tireoglobulina/metabolismo , Tireoglobulina/farmacologia , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Hormônios Tireóideos/metabolismo , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/metabolismo
19.
Int Immunopharmacol ; 115: 109706, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36638664

RESUMO

Influenza A viruses (IAV), significant respiratory pathogenic agents, cause seasonal epidemics and global pandemics in intra- and interannual cycles. Despite effective therapies targeting viral proteins, the continuous generation of drug-resistant IAV strains is challenging. Therefore, exploring novel host-specific antiviral treatment strategies is urgently needed. Here, we found that lidocaine, widely used for local anesthesia and sedation, significantly inhibited H1N1(PR8) replication in macrophages. Interestingly, its antiviral effect did not depend on the inhibition of voltage-gated sodium channels (VGSC), the main target of lidocaine for anesthesia. Lidocaine significantly upregulated early IFN-I, interferon α4 (IFNα4) mRNA, and protein levels, but not those of early IFNß in mouse RAW 264.7 cell line and human THP-1 derived macrophages. Knocking out IFNα4 by CRISPR-Cas9 partly reversed lidocaine's inhibition of PR8 replication in macrophages. Mechanistically, lidocaine upregulated IFNα4 by activating TANK-binding kinase 1 (TBK1)-IRF7 and JNK-AP1 signaling pathways. These findings indicate that lidocaine has an incredible antiviral potential by enhancing IFN-I signaling in macrophages. In conclusion, our results indicate the potential auxiliary role of lidocaine for anti-influenza A virus therapy and even for anti-SARS-CoV-2 virus therapy, especially in the absence of a specific medicine.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Interferon Tipo I , Animais , Humanos , Camundongos , Interferon-alfa , Lidocaína/farmacologia , Antivirais/farmacologia , Transdução de Sinais , Interferon Tipo I/farmacologia , Replicação Viral , Influenza Humana/tratamento farmacológico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/farmacologia , Fator Regulador 7 de Interferon
20.
Int Wound J ; 20(4): 1008-1019, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36056472

RESUMO

TNF-stimulated gene (TSG-6) was reported to suppress hypertrophic scar (HS) formation in a rabbit ear model, and the overexpression of TSG-6 in human HS fibroblasts (HSFs) was found to induce their apoptotic death. The molecular basis for these findings, however, remains to be clarified. HSFs were subjected to TSG-6 treatment. Treatment with TSG-6 significantly suppressed HSF proliferation and induced them to undergo apoptosis. Moreover, TSG-6 exposure led to reductions in collagen I, collagen III, and α-SMA mRNA and protein levels, with a corresponding drop in proliferating cell nuclear antigen (PCNA) expression indicative of impaired proliferative activity. Endoplasmic reticulum (ER) stress was also suppressed in these HSFs as demonstrated by decreases in Bip and p-IRE1α expression, downstream inositol requiring enzyme 1 alpha (IRE1α) -Tumor necrosis factor receptor associated factor 2 (TRAF2) pathway signalling was inhibited and treated cells failed to induce NF-κB, TNF-α, IL-1ß, and IL-6 expression. Overall, ER stress was found to trigger inflammatory activity in HSFs via the IRE1α-TRAF2 axis, as confirmed with the specific inhibitor of IRE1α STF083010. Additionally, the effects of TSG-6 on apoptosis, collagen I, collagen III, α-SMA, and PCNA of HSFs were reversed by the IRE1α activator thapsigargin (TG). These data suggest that TSG-6 administration can effectively suppress the proliferation of HSFs in part via the inhibition of IRE1α-mediated ER stress-induced inflammation (IRE1α/TRAF2/NF-κB signalling).


Assuntos
Cicatriz Hipertrófica , NF-kappa B , Animais , Humanos , Coelhos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 2 Associado a Receptor de TNF/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/farmacologia , Cicatriz Hipertrófica/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Fibroblastos , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...